Analysis of Temporal Noise in CMOS APS
نویسندگان
چکیده
Temporal noise sets a fundamental limit on image sensor performance, especially under low illumination and in video applications. In a CCD image sensor, temporal noise is well studied and characterized. It is primarily due to the photodetector shot noise and the thermal and 1/f noise of the output charge to voltage amplifier. In a CMOS APS several additional sources contribute to temporal noise, including the noise due to the pixel reset, follower, and access transistors. The analysis of noise is further complicated by the nonlinearity of the APS charge to voltage characteristics, which is becoming more pronounced as CMOS technology scales, and the fact that the reset transistor operates below threshold for most of the reset time. The paper presents an accurate analysis of temporal noise in APS. We analyze the noise for each stage of the sensor operation, and identify the noise contribution from each source. We analyze noise due to photodetector shot noise taking nonlinearity into consideration. We find that nonlinearity improves SNR at high illumination. Using an MOS transistor subthreshold noise model we show that the noise due to the reset transistor shot noise is at most half the commonly quoted (V2) value. Using HSPICE simulation, we find the noise due to the follower and access transistors. As expected we find that at low illumination reset noise dominates, while at high illumination photodetector shot noise dominates. Finally, we present experimental results from test structures fabricated in O.35p CMOS processes. We find that both measured peak SNR and reset noise values match well with the results of our analysis.
منابع مشابه
Analysis of Temporal Noise in CMOS Photodiode Active Pixel Sensor
Temporal noise sets the fundamental limit on image sensor performance, especially under low illumination and in video applications. In a CCD image sensor, temporal noise is primarily due to the photodetector shot noise and the output amplifier thermal and 1 noise. CMOS image sensors suffer from higher noise than CCDs due to the additional pixel and column amplifier transistor thermal and 1 nois...
متن کاملCharge Transfer Noise and Lag in CMOS Active Pixel Sensors
This paper reports on the investigation of charge-transfer noise and lag in CMOS image sensors. Noise and lag are analyzed for buried-photodiode CMOS active-pixel-sensor (APS) devices using a simple Monte-Carlo technique. Since the main mechanism of charge-transfer noise involves carrier emission over a barrier, the results are applicable to the soft reset of photodiode-type CMOS APS devices, a...
متن کاملAnalysis and design of a CMOS current reused cascaded distributed amplifier with optimum noise performance
In this paper, analysis, simulation and design of a distributed amplifier (DA) with 0.13µm CMOS technology in the frequency range of 3-40 GHz is presented. Gain cell is a current reused circuit which is optimum in gain, noise figure, bandwidth and also power dissipation. To improve the noise performance in the frequency range of interest, a T-matching low pass filter LC network which is utilize...
متن کاملAnalysis of 1/f noise in CMOS APS
As CMOS technology scales, the effect of 1/f noise on low frequency analog circuits such as CMOS image sensors becomes more pronounced, and therefore must be more accurately estimated. Analysis of 1/f noise is typically performed in the frequency domain even though the process is nonstationary. To find out if the frequency domain analysis produces acceptable results, the paper introduces a time...
متن کاملOptimization of Noise and Responsivity in CMOS Active Pixel Sensors for Detection of Ultra Low Light Levels
In this paper, we present results of the investigation of the design and operation of CMOS active pixel sensors for detection of ultra-low light levels. We present a detailed noise model of APS pixel and signal chain. Utilizing the noise model, we have developed APS pixel designs that can achieve ultra-low noise and high responsivity. We present results from two test chips, that indicate (1) th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999